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H I G H L I G H T S  

• Conversion of plastic waste into biofuel by pyrolysis was compressively reviewed. 
• Effects of conditions, catalyst, plastic, and reactor type on biofuel were discussed. 
• The state-of-the-art of machine learning in plastic pyrolysis was reviewed. 
• A critical discussion of recent challenges with future perspectives was presented.  
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A B S T R A C T   

It is urgent to promote the technology development of plastic waste (PW) valorization to mitigate the present 
serious plastic pollution. Pyrolysis has been widely used to convert PW into high-value-added products, espe-
cially liquid fuels, in a sustainable manner. However, achieving a high yield of liquid fuel with good quality 
remains challenging due to the difficulty in optimizing pyrolysis process and synthesizing outstanding catalysts 
to narrow the product distribution. This work comprehensively reviewed PW pyrolysis from both technical and 
computational (machine learning modeling) aspects, with a critical discussion of recent challenges to find new 
insights for improving the conversion efficiency and promoting commercialization. Results indicated that the 
impacts of various factors, including PW type, process condition, catalyst, and reactor type, on the PW pyrolysis 
were extensively investigated by the research community. Machine learning methods have also been frequently 
applied to predict, interpret, and optimize the PW pyrolysis. However, more efforts can be made in the future 
regarding catalyst synthesis, selection of co-pyrolysis additives, mechanism of catalyst deactivation, and design 
of renewable energy supply system for PW pyrolysis plants. Additionally, more attention should be paid to 
enlarging the data size, improving model interpretability, and exploring innovative ways of machine learning 
application (e.g., active learning) in process optimization and catalyst design for PW pyrolysis.   

1. Introduction 

Nowadays, plastic pollution has become a significant global envi-
ronmental challenge due to the high consumption and weak biode-
gradability of plastics. The global plastics consumption has exceeded 
380 million tons and continues to rise annually [1]. The outbreak of 
Covid-19 has further exacerbated this issue, generating massive plastic 

waste (PW) from the consumption of medical plastics, masks, and 
takeaway boxes. In 2016, nearly 23 million tons of PW entered aquatic 
ecosystems (e.g., rivers and oceans) [2], posing a severe threat to the 
growth of aquatic organisms (Fig. 1). Researchers cataloged more than 
12 million pieces of trash in and around rivers, oceans, coastlines, and 
seabeds, which suggested that more than 40% of the plastic was asso-
ciated with takeaway food and beverages [3]. Ultimately, plastics may 
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spread and accumulate through the food chain in the form of micro-
plastics, posing a potential threat to human health. 

On the other hand, plastic-related emission has accounted for 4.5% 
of global greenhouse gas emissions [4]. The production of 1 ton of 
plastics from using traditional fossil resources will generate about 5 tons 
of equivalent carbon emissions [5], while recycling 1 ton of plastics by 
chemical and physical methods generate only 1.0 and 1.5 tons of 
equivalent carbon emissions, respectively [6]. But so far, only 21% of 
PW has been recycled or incinerated worldwide [7], and the recycling 
rate in China is only about 30% [8], since most of them are still treated 
by landfilling which would lead to waste of resource and greenhouse 
gases emissions [9-11]. To control plastic pollution and encourage the 
high value-added utilization of PW, new policies have been introduced 

by the Development and Reform Commission and the Ministry of Ecol-
ogy and Environment of China. Recycling and converting PW into 
renewable energy and sustainable resources can not only aid the control 
of plastic pollution but also substitute some fossil fuels to reduce carbon 
emissions, which is beneficial to achieving the goal of “double carbon” 
proposed by China. Different conversion technologies for PW valoriza-
tion have been developed, including thermal [12], microbe/enzyme- 
aided [13-15], and mild catalyst-aided conversions [16]. Thermal con-
version can efficiently deconstruct any kind of PW (unsorted and 
contaminated ones) with multiple products generated, such as carbon 
material, bio-oil [17], and syngas [18,19]. Although biological conver-
sion is cost-saving, the conversion efficiency is too slow to handle the 
large generation of PW. Mild catalyst-aided conversions, such as 

Fig. 1. (a) Global annual consumption amounts of different plastics [1] and (b) the impact of plastic waste on the marine ecosystem [35].  
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hydrogenolysis [20], photocatalysis [21], and electrocatalysis [22,23], 
could produce high-quality chemicals. However, developing 
outstanding catalysts for these processes requires significant investment 
in both labor and capital. Comparatively, thermal conversion is the most 
promising approach to be scaled up and commercialized for PW utili-
zation due to its strong adaption to PW type and high conversion effi-
ciency. Among thermal conversion pathways, pyrolysis is the most 
widely used one since it can produce a range of high-value-added fuels 
and chemicals by controlling the pyrolysis conditions [24,25]. Specif-
ically, a high yield of liquid oil (up to 80 wt%) could be achieved in PW 
pyrolysis under a moderate temperature of about 500 ◦C [25]. 

Due to the merit of pyrolysis for PW utilization, significant efforts 
have been made to further upgrade this technology. Although pyrolysis 
is flexible to produce various products by manipulating and optimizing 
the process conditions, intensive labor, time, and capital are essential to 
design and conduct the intensive investigation [26]. To overcome this 
limitation, the research community has developed computational 
modeling approaches [27-29], such as machine learning (ML), compu-
tational fluid dynamics (CFD), and Aspen simulation, to explore pyrol-
ysis and optimize process conditions for promoting its scale-up 
application. Recently, ML methods have gained more and more atten-
tion due to their advances in computational speed and robust adaption 
in different research domains [28,30,31]. ML, a data-driven approach, 
can learn from complex, highly dimensional, and large historical data to 
generate predictive models [32,33]. This means there is a strong flexi-
bility in feature selection, allowing us to consider as many factors 
related to pyrolysis as possible to develop ML models [34]. This unique 
advantage of ML modeling compared to other computational ap-
proaches has led to a surge of interest in using ML methods. As a result, 
domain researchers have reported numerous studies on the ML modeling 
of PW pyrolysis. 

To understand the recent advances in PW pyrolysis and corre-
sponding ML applications, we conducted a systematic literature review 
from both technical and computational perspectives. This review is the 
first of its kind to report such a comprehensive review related to PW 
pyrolysis and ML application. It should be noted that the yield and 
quality of products from PW pyrolysis are highly dependent on several 
factors, including the feedstock type, pyrolysis reactor, catalyst, and 
pyrolysis conditions. All of these factors can also be considered in the ML 
modeling process to develop predictive models for specific purposes, 
such as predicting the distribution of three-phase products and pyrolysis 
kinetic parameters, characterizing and evaluating pyrolysis oil during 
production and application. Moreover, the ML models for PW pyrolysis 
are also applied to interpret the importance and correlations of input 
factors on the predicted targets and combine them with optimization 
algorithms to optimize the pyrolysis conditions for producing desired 
products by identifying individual objective functions. In general, this 
review focuses on PW pyrolysis from both technical and computational 
perspectives. Section 2 summarizes and discusses the technical aspect of 
PW pyrolysis with the consideration of various factors involved. The 
third section provides a detailed review of ML applications in PW py-
rolysis based on different modeling purposes. Section 4 presents the 
current challenges and limitations on both the technical aspects and ML 
modeling of PW pyrolysis with proposed future directions. 

2. Prominent factors in plastic waste pyrolysis 

Pyrolysis is a thermal conversion in which the PW is heated and 
decomposed under inert gas or oxygen-deficient conditions [36]. It is 
considered one of the most promising technologies for PW valorization. 
The process produces three-phase products, i.e., liquid oil, char, and 
combustible gas. Among these products, bio-oil is regarded as the most 
valuable one due to its high yield and rich contents of various chemicals. 
High-quality bio-oil could be directly used as renewable energy to 
replace traditional fossil fuels and mitigate the greenhouse gas emissions 
for carbon neutrality [37]. To achieve a high yield of bio-oil with good 

quality, it is crucial to understand the impacts of the factors involved in 
the PW pyrolysis on bio-oil production. Therefore, a systematic litera-
ture review was conducted based on the factors, including types of 
feedstocks (types of plastics and other additives), pyrolysis conditions, 
catalysts applied in pyrolysis, and types of pyrolysis reactors (Fig. 2), to 
understand their impacts on the distribution of three-phase products and 
the components in bio-oil from PW pyrolysis, as shown in Table 1. 

2.1. Effect of feedstock 

Pyrolysis has proven to be capable of utilizing different types of PW 
as feedstock for renewable energy production [25]. The decomposition 
process, distribution, and compositions of products from PW pyrolysis 
vary depending on PW types being processed. Cepeliogullar and Putun 
investigated the thermal behaviors of both polyethylene terephthalate 
(PET) and polyvinyl chloride (PVC) plastics during pyrolysis [38]. They 
found that the maximum weight loss for PET and PVC occurred at 
around 400 ◦C and 285 ◦C, respectively. Moreover, fixed bed pyrolysis 
experiments indicated that the liquid/gas yield from pyrolysis of PET 
and PVC was 23.1 wt%/ 76.9 wt% and 12.3 wt%/ 87.7 wt%, respec-
tively, under the conditions of 500 ◦C with a heating rate of 10 ◦C min− 1. 
Ahmad et al. studied the pyrolysis of polypropylene (PP) and high 
density polyethylene (HDPE) in a steel microreactor and found that a PP 
conversion of 98.66 wt% was achieved at 300 ◦C with 69.82 wt% liquid 
and 28.84 wt% gas products [39]. Similarly, a high conversion effi-
ciency (98.12 wt%) of HDPE was obtained at 350 ◦C with 80.88 wt% 
liquid and 17.24 wt% gas products. Moreover, the analysis of the liquid 
fractions showed that naphtha range hydrocarbons were enriched from 
both PP and HDPE pyrolysis; however, the high proportion compounds 
in PP-derived liquid were C13-C16 and C6-C12 for HDPE. It also should 
be noted that the detailed chemical products of liquid fraction from 
pyrolysis of polyolefin and other plastics were different. For polyolefin 
plastic, the main components of liquid products were paraffin, olefins, 
and naphthene [39]. In the case of other plastics, such as PET, it was 
reported that half of the liquid product was benzoic acid which was 
unfavorable due to its corrosiveness [38]. 

Based on the above literature review, it was found that the type of 
PW had significant impacts on the decomposition process, distribution, 
and compositions of products from pyrolysis. These impacts were 
dominated by the different structures and compositions of plastics. For 
example, the possible reason why the temperature for the maximum 
weight loss of PET was higher than that of PVC could be due to the 
higher bond dissociation enthalpy of PET compared to PVC (Fig. 3a) 
[38,40]. In addition, the volatile matter (VM) content from the proxi-
mate analysis of plastics plays an important role in the generation of 
liquid oil from pyrolysis, where a higher VM content contributes to a 
higher yield of liquid oil [19]. The oil yield from the PET pyrolysis was 
found to be only 23.1 wt% which is significantly lower compared to that 
obtained from the PP pyrolysis [38,39]. The lower liquid yield could be 
explained by the lower content of VM in PET, as shown in Fig. 3b. It 
should be noted that despite the high VM content (97 wt%) of PVC, the 
oil yield from its pyrolysis is quite low owing to the high content of Cl in 
PVC, which would lead to the formation of abundant HCl instead during 
pyrolysis [41]. The generation of HCl is a disaster during pyrolysis due 
to its highly corrosive and toxic properties. It was reported that HCl 
formation was one of the main reasons for the shutdown of a pyrolysis 
pilot plant in Ebenhausen, Germany [42]. 

Co-pyrolysis of PW with other biomass wastes has also been 
frequently studied to evaluate the possible synergies and determine ef-
fects of different components on the process. Xu et al. studied the co- 
pyrolysis of macroalgae (Enteromorpha prolifera) and HDPE in the 
presence of the HZSM-5 catalysis [43]. The results showed that acids, 
oxides, and nitrogen-containing compounds decreased while the aro-
matic hydrocarbons and light oil increased during co-pyrolysis. Akancha 
achieved the highest liquid oil yield of 80.5 wt% during the co-pyrolysis 
of waste PP and rice bran wax at 550 ◦C with a blend ratio of 1:3 [44]. 
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The reduced oxygenates, higher aliphatic compounds, and fuel proper-
ties within the range of gasoline and diesel indicated good quality of the 
generated oil. Singh and Ruj studied the optimum pyrolysis temperature 
of the mixed PW (58.8 wt% PE (HDPE and low density polyethylene 
(LDPE), 26.9 wt% PP, 8.7 wt% polystyrene (PS), and 5.6 wt% PET) using 
thermogravimetric analysis (TGA) [45]. They found that the initial 
decomposition temperature decreased from 350 to 310 ◦C compared to 
individual plastic pyrolysis. López et al. further explored the impact of 
real packing waste composition on the characteristics of pyrolysis 
products at 500 ◦C for 30 min [46]. They stated that high paper content 
in feedstock would produce more water in the pyrolysis liquid and more 
CO and CO2 in the gases; while higher PE film content could increase the 
viscosity of liquids. Moreover, the metal content in feedstock had cata-
lytic effects to increase the proportion of aromatic hydrocarbons in 
pyrolysis oil. 

2.2. Effect of pyrolysis conditions 

Operation condition is another important factor in PW pyrolysis, 
with pyrolysis temperature, residence time, and heating rate being the 
three main parameters involved. Temperature is one of the most 
important factors in PW pyrolysis since it dominates the chain-cracking 
processes of plastic polymer. As the pyrolysis temperature increases, the 
vibration of molecules in plastics will become stronger to overcome the 
attraction of Van der Waals force. Once the vibration energy is higher 
than the enthalpy of the C–C bond in the chain, the carbon chain will be 
broken [47]. Gracida-Alvarez et al. investigated the impact of temper-
ature on the products of HDPE micropyrolysis [48]. The decreased liquid 
yield from 62.7 to 48.8 wt% and increased gas product from 34.3 to 
51.0 wt% were found as the temperature increased from 625 to 675 ◦C. 
Moreover, it was observed that the increase in temperature enhanced 
the degradation of diesel range oil (C11-C20) and waxes (C21-C31) with 
more aromatics and light aliphatics formation. For a two-step catalytic 
pyrolysis, the PW will be first decomposed, and then primary volatiles 
pass through a catalytic bed to be further reformed. The catalytic tem-
perature is also a crucial parameter for catalyst selectivity and product 
distribution. Onwudili et al. found a gradual increase of C8-C16 straight- 
chain alkanes and monocyclic aromatics with the catalytic temperature 
from 430 to 571 ◦C during the pyrolysis-catalysis of a simulated mixed 
PW sample. They also obtained an increase of C1-C4 hydrocarbons when 
the catalyst bed temperature increased from 500 to 600 ◦C [49]. How-
ever, a further increase in catalytic temperature decreased the liquid 
yield due to its promotion of the secondary cracking of primary vapors. 

Residence time is also an important factor in PW pyrolysis, although 
its effect is weaker than that of temperature. A long residence time can 

promote the secondary cracking of PW and result in a high gas yield in 
most cases. Miandad et al. investigated the role of residence time on PS 
pyrolysis and found that the gas yield increased constantly with the 
increase of residence time, while the yield of liquid oil remained un-
changed when residence time further increased from 75 to 120 min [50]. 
They also emphasized the highest styrene yield (48 wt%) could be ob-
tained when pyrolysis temperature and residence time were set at 450 ◦C 
and 75 min. Mastral et al. investigated the effect of residence time on 
HDPE pyrolysis at a two-stage micropyrolysis reactor [51]. The results 
suggested that the longer residence time tended to facilitate aromatics 
production. However, the effect of residence time was strongly limited 
comparing to the pyrolysis temperature and weakened further on liquid 
and gaseous yield when the temperature was over 685 ◦C. 

Heating rate can make a difference to the pyrolysis-temperature 
pattern. For example, Cao et al. found a higher heating rate could 
delay the HCl primary release temperature from 270 ◦C at 10 ◦C/min to 
370 ◦C at 60 ◦C/min during PVC pyrolysis [52]. Xu et al. found a higher 
heating rate could shift the initial, end, and peak temperatures to higher 
values during pyrolysis experiments in a thermal analyzer [53]. These 
phenomena could be explained by the large temperature difference 
between the furnace and the PW sample, which was attributed to the 
thermal lag and the limitations in heat transfer rate. On the other hand, 
the higher DTG peaks observed at higher heating rates indicated that the 
reaction rate would be increased by a higher heating rate, thereby 
speeding up the weight loss. Furthermore, the influence of heating rates 
on PP pyrolysis in a bench-scale reactor was found to be significant at 
high temperatures, where a fast-heating rate (180 ◦C/min) promoted the 
cracking reactions of volatiles released at 600 ◦C and formed more light 
compounds [54]. 

To sum up, the pyrolysis temperature plays the most crucial role in 
the C–C bond broken of PW, while residence time presents a significant 
effect on the product distribution and liquid composition at a consid-
erably low pyrolysis temperature during PW pyrolysis. Higher temper-
ature, longer residence time, and slower heating rate would enhance the 
secondary cracking of volatiles and promote the decomposition of 
polymers, resulting in a higher proportion of low-molecular-weight 
hydrocarbons in liquid oil and a higher gas yield. Moreover, the selec-
tivity of aromatics is controlled by both the temperature and residence 
time, indicating that optimal products require careful selection in py-
rolysis parameters. To achieve the maximum liquid oil recovery from 
PW pyrolysis, the pyrolysis temperature should be accurately controlled 
based on the PW type. A further elevation in reaction temperatures 
would result in the transformation of more volatiles into non- 
condensable gases. 

Fig.2. Basic flow and prominent factors of plastic waste pyrolysis.  
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Table 1 
Summary of energy and resource production from pyrolysis of plastic waste.  

Plastic 
types 

Reactor types Pyrolysis conditions Catalyst 
(plastic to 
catalyst ratio) 

Liquid 
yield (wt 
%) 

Gas 
yield 
(wt%) 

Solid 
yield 
(wt%) 

Components in liquid Ref. 

Temperature 
(◦C) 

Residence 
time (min) 

Heating 
rate (◦C/ 
min) 

PET Tandem 
μ-reactor 

450;700  
(catalysis) 

20 10 ZnO (1:20) / / / 83.9 wt% of aromatic 
compounds, 16.1 wt% of 
oxygenates 

[63] 

MgO (1:20) 38.7 wt% of aromatics, 61.3 wt% 
of oxygenates 

TiO2 (1:20) 38.9 wt% of aromatics, 61.1 wt% 
of oxygenates 

ZrO2 (1:20) 43.9 wt% of aromatics, 56.1 wt% 
of oxygenates 

CaO (1:20) 99.7 wt% of aromatics, 0.3 wt% 
of oxygenates 

PET Cylindrical 
horizontal 
furnace 

450 10; 0.3 45 Sulphated 
ZrO2 (100:3) 

48 35 17 27.5 wt% of benzoic acid, 13.9 
wt% of other aromatic 
compounds 

[84] 

HDPE Horizontal steel 350 30 20 / 80.88 17.24 1.88 59.70 wt% of paraffinic, 31.90 
wt% olefinic, and 8.40 wt% of 
naphthenic hydrocarbons 

[64] 

HDPE Semi-batch 450 25 / FCC catalyst 
(10:1) 

91.2 4.1 4.7 73.78 wt% of olefins, 14.95 wt% 
of paraffins, 5.84 wt% of 
aromatic compounds 

[85] 

HDPE Fixed bed 600;600  
(catalysis) 

30 10 Ni/Mo/Fe/ 
Ga/Ru/Co Y- 
zeolite (1:2) 

31–43 29–43 14–24 Around 80–95 wt% of aromatics, 
5–20 wt% of aliphatic 
hydrocarbons 

[57] 

HDPE Fixed bed 500;500  
(catalysis) 

30 10 MCM-41: 
ZSM-5: HDPE 
= 1:1:1 

83.15 16.85 / 97.72 wt% of gasoline range 
hydrocarbons, 95.85 wt% of 
aromatics 

[59] 

HDPE Microwave- 
assisted reactor 

500;450  
(catalysis) 

20 80–100 MgO (15:1) 37.00 60.85 2.15 36 wt% of C5-C12 aromatics, 38 
wt% of C5-C12 alkenes, 11 wt% 
of C5-C12 alkanes 

[86] 

HDPE Batch reactor 550 / 5 HZSM-5 (10:1) 17.3 72.6 10.1 6.7 wt% of paraffins, 42.7 wt% of 
olefins, 50.6 wt% of aromatics 

[87] 

HUSY (10:1) 41.0 39.5 19.5 37.9 wt% of paraffins, 18.3 wt% 
of olefins, 43.8 wt% of aromatics 

PVC Fixed bed 500 / 10  12.3 87.7 0 33.55% of naphthalene derives [38] 
LDPE Batch reactor 550 / 5 HZSM-5 (10:1) 18.3 70.7 11 8.5 wt% of paraffins, 39.4 wt% of 

olefins, 52.1 wt% of aromatics 
[87] 

HUSY (10:1) 61.6 34.5 3.9 34.8 wt% of paraffins, 33.9 wt% 
of olefins, 31.3 wt% of aromatics 

PP Tube furnace 600 60 10 Kaolin clay 
(9:1) 

17.8 64.8 17.4 30–40 wt% of aromatics, 25–35 
wt% of straight alkenes, 5–10 wt 
% of cycloparaffins, 2–7 wt% of 
straight alkanes 

[88] 

PP Tubular reactor 600 60 15 / 60.5 31.8 2.5 31.0 wt% of heavy fractions and 
29.5 wt% of light fractions 

[54] 

PP Auger reactor 
and fluidized 
bed reactor 

720 / / / 18.48 81.10 0.17 0.9% aliphatics, 10.12% 
aromatics and 7.46% unknowns 

[89] 

PS Fixed bed 450 75 / Natural zeolite 54 12.8 33.2 91 wt% of aromatics, mostly 
ethylbenzene (60.8 wt%) 

[90] 

PS Batch reactor 450 120 / ZnO (5:1) 96.73 / / 2.47 wt% toluene, 1.16 wt% 
ethylbenzene, 47.96 wt% styrene 
monomer and 1.90 wt% 
α-methylstyrenes 

[91] 

PE Fixed bed 400–420 180–240  / 65 26 9 13.1% of hydrogen with a higher 
heating value of 45.31 Mj/kg 

[92] 

PP, PE, 
and 
PET 

Batch reactor 550 174 / / 86.04 8.11 5.85 94.8% non-aromatic products, 
5.2 aromatic product 

[93] 

128 / HZSM-5 (9:1) 82.53 10.72 6.75 80.5% non-aromatic products, 
19.5 aromatic product 

146 / / 84.24 9.01 6.75 92.6% non-aromatic products, 
7.4 aromatic product 

121 / HZSM-5 (9:1) 71.63 19.82 8.55 94.8% non-aromatic products, 
5.2 aromatic product 

PE, PP, 
and 
PS 

Tubular furnace 550; 600 
(catalysis) 

40 20 Sewage sludge 
derived char 
(8:5) 

41.3 48.8 9.9 47.4 wt% of Monocyclic 
aromatics, 24.5 wt% of PHAs, 
and 1.3 wt% of alkanes 

[68] 

PE, PP, 
and 
PS 

Tubular furnace 550; 600 
(catalysis) 

40 20 Quartz sand 
(8:5) 

46.6 51.0 2.4 48.6 wt% of Monocyclic 
aromatics, 19.8 wt% of PHAs, 
and 4.8 wt% of alkanes 

[68] 

(continued on next page) 
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2.3. Effect of catalyst in pyrolysis 

Catalytic pyrolysis can promote the rearrangement of randomly 
broken polymers into specific products, resulting in narrower product 
distributions. However, achieving a targeted conversion efficiency of 
PW into desirable products remains challenging, even with the adjust-
ment of pyrolysis parameters to obtain a higher liquid oil yield with a 
high proportion of light fraction. Recently, various catalysts have been 
developed to narrow product distribution and improve product selec-
tivity, and their catalytic effects are mainly dominated by acidity and 
pore structure [55]. Specifically, the addition of catalysts can reduce the 
energy demand for breaking C–C linkage, decreasing the decomposi-
tion temperature of PW in pyrolysis and accelerating the heat transfer 
rate to further increase the reaction rate [19]. 

Zeolites are widely investigated in PW pyrolysis due to their strong 
acidic properties, unique pore structure, and selectivity. The catalytic 
activity of zeolites is highly dependent on the SiO2/Al2O3 ratio which 
dominates the acidic strength. Artetxe et al. studied the impact of the 
SiO2/Al2O3 ratio of HZSM-5 zeolite on the product composition during 
HDPE pyrolysis [56]. The results showed that reducing SiO2/Al2O3 from 
280 to 30 increased the yield of light olefins and aromatics while 
decreasing the yield of heavy fractions of C12–C20. Moreover, zeolite 
catalysts have demonstrated high selectivity towards aromatics. Akubo 
et al. found that the aromatic proportion, especially mono-cyclic aro-
matics, exceeded 80% in the liquid oil from HDPE pyrolysis in a two- 
stage fixed bed with the catalysis of metal-loaded Y-zeolites, while the 
aliphatic hydrocarbons occupied over 99% in the non-catalytic process 
[57]. 

Mesoporous aluminosilicates are also suitable catalysts for PW py-
rolysis due to their pores with a size of 1.5–30 nm which allows the 
direct entrance of pyrolysis volatiles and increases the interaction be-
tween plastic molecules with internal acid sites. Zhang et al. developed a 
shape-selective Al-SBA-15 catalyst that converted LDPE into gasoline 

[58]. Despite having weaker acid sites compared to ZSM-5, Al-SBA-15 
(silicon/aluminum molar ratio = 5) achieved 50% conversion of the 
feedstock at a lower temperature, with enrichment of C4–C10 alkenes 
and alkanes rather than mono-aromatics. On the other hand, Ratnasari 
et al. achieved the conversion of HDPE into gasoline-range hydrocar-
bons through two-staged catalysis of MCM-41 and ZSM-5 (1:1) [59]. By 
combining the high surface area and large pore volume of mesoporous 
MCM-41 with the shape-selectivity of ZSM-5, they achieved a 97.72 wt% 
yield of gasoline range hydrocarbon production with 95.95 wt% 
aromatics. 

Fluid catalytic cracking (FCC) catalysts, a combination of zeolite 
crystals and non-zeolite acid matrix, have been applied as PW pyrolysis 
catalysts due to their economical consideration for industrial applica-
tion, as the spent FCC catalysts are easily available from commercial 
petroleum refineries. Kyong et al. studied the efficiency of spent FCC 
catalyst on HDPE pyrolysis and found that it could increase the oil yield 
from 75.5 to 79.7 wt% with a dramatic decrease of solid residue yield 
from 4.5 to 0.9 wt% [60,61]. Moreover, the initial temperature of oil 
formation was lowered with the assistance of spent FCC, demonstrating 
a significant improvement in the conversion rate of feedstock. In addi-
tion, the spent FCC was also applied to the thermal cracking of HDPE 
[62]. It was found that fewer aromatics but more olefins were produced 
in the naphtha fraction, which is attributed to the meso- and macro-
porous pores in the zeolite crystals that favor selectivity to light olefins. 

In addition to the catalysts mentioned earlier, metal catalysts and 
porous carbon are also potential catalysts for PW pyrolysis for their 
multivalent nature and high specific surface area with rich functional 
groups, respectively [63-65]. Kumagai et al. investigated the tandem 
pyrolysis of PET, and the volatiles produced from the first reactor was 
catalyzed by CaO in the second reactor [66]. They found CaO enhanced 
the decarboxylation and increased benzene production, resulting in 
83.6% selectivity for aromatics at 700 ◦C. Ji et al. found the addition of 
transition metal oxide during in-situ pyrolysis of PVC through Py- 

Table 1 (continued ) 

Plastic 
types 

Reactor types Pyrolysis conditions Catalyst 
(plastic to 
catalyst ratio) 

Liquid 
yield (wt 
%) 

Gas 
yield 
(wt%) 

Solid 
yield 
(wt%) 

Components in liquid Ref. 

Temperature 
(◦C) 

Residence 
time (min) 

Heating 
rate (◦C/ 
min) 

PS and 
PP 

Microwave oven 900 W 10 / Activated 
carbon (10:1) 

84.30 15.7 0 80.58 wt% of aromatic content 
(toluene (3.39 wt%), styrene 
(67.58 wt%) 

[94] 

LDPE Microwave oven 500 / / NiO (in-situ) 
and HY (ex- 
situ) 

56.5 41.8 1.7 93.8% of gasoline fraction with 
6.1% fractions of C13+

[95] 

HDPE: High Density Polyethylene, LDPE: Low Density Polyethylene, PE: Polyethylene, PP: polypropylene, PS: polystyrene, PVC: polyvinyl chloride, PET: polyethylene 
terephthalate, PLA: polylactic acid. 

Fig. 3. The basic structure with bond dissociation enthalpies (a) and proximate and elemental analysis (b) of different types of plastics [19,40].  
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GC–MS could reduce the initial decomposition temperature, expand the 
pyrolysis temperature range, and significantly decrease the proportion 
of aromatic compounds in products [67]. Additionally, porous carbon 
materials, such as biochar and activated carbon, with great surface 
properties and low production cost, are widely used in PW catalytic 
pyrolysis. Sun et al. utilized sewage sludge-derived char as a catalyst for 
PW pyrolysis, which successfully increased the aromatic selectivity in 
produced oil due to the enhanced dehydrogenation contributed by P, Fe, 
and S-containing active sites, achieving 75.3 wt% monocyclic aromatics 
production at 600 ◦C [68]. Mateo et al. synthesized a sulfonated acti-
vated carbon to promote the production of bio-jet fuel from co-pyrolysis 
of biomass and PW, achieving 50 wt% of bio-oil with a high proportion 
(97.51 wt%) of bio-jet fuels (aromatics and C9-16 alkanes) [69]. 

Recent studies have focused on the problem of catalyst deactivation 
during solid waste pyrolysis. This is an inevitable phenomenon during 
the catalytic pyrolysis of PW, especially for in-situ catalysis, as impu-
rities in PW would limit the activity of the catalysts [19]. Moreover, the 
effective separation and regeneration of catalysts from solid residues are 
also a barrier. Meanwhile, in the pyrolysis-catalysis system, the deacti-
vated catalyst caused by coke deposition and active site poisoning is also 
a tough concern. 

2.4. Effect of pyrolysis types with different reactor designs 

The pyrolysis types with different reactor designs play a crucial role 
in determining the mass and heat transfer efficiency during pyrolysis. 
This is particularly important for PW due to the low thermal conduc-
tivity of plastic materials. Variations in mass and heat transfer rates of 
different reactors can affect the PW conversion process, thus influencing 
the pyrolysis efficiency, product distribution and compositions. Batch 
reactors and semi-batch reactor (Fig. 4) are widely used for plastic py-
rolysis on the lab and industrial scale. However, their disadvantages of 
poor heat transfer, high labor costs, intermittent operation, and 

difficulty in large-scale production limited its wider application [25,70]. 
To enable continuous pyrolysis, fluidized bed reactors (Fig. 4) were 

developed with high heating rates and short residence time for PW py-
rolysis to minimize the secondary reactions of volatiles [71,72]. Park 
et al. designed a two-stage pyrolysis process containing an auger reactor 
and a fluidized bed (Fig. 4) for waste PE recycling, which achieved 74.6 
wt% gas yield containing 34.5 wt% ethene with a higher proportion of 
aromatic hydrocarbons in the pyrolysis oil [73]. Despite these advan-
tages, agglomeration of the molten feedstock and the corresponding 
defluidization are the main problems for fluidized bed reactors, partic-
ularly when alkali elements are contained in the feedstock [19]. In this 
regard, conical spouted bed reactors (CSBR) (Fig. 4) become a better 
option with good mixing ability of gas and large particle size solid 
phases, which can significantly improve heat transfer and avoid the 
defluidization. Elordi et al. conducted the catalytic cracking of HDPE in 
CSBR at 500 ◦C with spent FCC catalyst, achieving 50 wt% gasoline yield 
and about 28 wt% C2-C4 olefins production [74]. To further avoid bed 
defluidization and improve the efficiency of catalytic plastic pyrolysis in 
CSBR, Orozco et al. investigated the impacts of plastic type, the ratio of 
bed mass to plastic feed rate (Wbed/Qplastic), spouting velocity and use of 
catalyst. Their results indicated lower temperature was required to 
avoid defluidization when Wbed/Qplastic and spouting velocity were 
increased [75]. 

Microwave-assisted pyrolysis (MAP) is a newly developed technol-
ogy applied in organic solid pyrolysis [76-78]. It directly heats 
microwave-absorbing materials through dielectric heating provided by 
microwave irradiation. However, the low dielectric constant of plastics 
requires mixing with a high microwave-absorbent material during MAP. 
The application of MAP in PW recycling was first conducted by Undri 
et al. who found that tires and carbonaceous char, as microwave ab-
sorbers, significantly reduced the residence time for HDPE and PP py-
rolysis [79]. Subsequently, the microwave power, absorber type, and 
pyrolysis catalyst became the keys for MAP to maximize oil yield. Zhou 

Fig. 4. Scheme of the pyrolysis process in batch and semi-batch reactor [70], fluidized bed reactor [71], conical spouted reactor [74], two-stage pyrolysis process (an 
auger reactor and a fluidized bed) [89], and microwave-assisted fluidized bed reactor[81] (Adapted with permission from Elsevier). 

J. Li et al.                                                                                                                                                                                                                                         



Applied Energy 346 (2023) 121350

8

et al. studied the effect of temperature, plastic composition, and catalyst 
on the MAP of PW [80]. They found that Talc showed a high cracking 
activity as a plastic filler for PP pyrolysis. Moreover, the addition of a 
ZSM-5 catalyst can achieve a 48.9 wt% recovery of liquid oil with 73.5 
wt% gasoline-range hydrocarbons. Recently, a microwave fluidizing bed 
reactor (Fig. 4) was developed by Cui et al. for the PP pyrolysis, which 
achieved an optimal syngas yield of 76.1 wt% with higher heating value 
of 51.8 MJ/m3 when the pyrolysis temperature was 900 ◦C, fluidizing 
velocity was 2.36 × 10-3 m/s and microwave power was 800 W [81]. 

In addition, other advanced pyrolysis reactors have been developed 
by researchers, such as solar concentrator reactors and autogenic pres-
sure autoclave reactors. Zeaiter et al. converted scrap rubber into 
gaseous and liquid products through an automated solar concentrator 
system to utilize solar energy for pyrolysis [82]. The reactor could be 
heated up to 550 ◦C within minutes, and the highest gas yield could 
reach 32.8 wt% with the catalysis of the H-beta catalyst. Zhang et al. 
conducted waste PET recycling through autogenic pressure pyrolysis in 
a steel autoclave reactor at 700 ◦C for 30 min, and the high proportion of 
methane (34.58 vol%) in the pyrolysis gas makes it an alternation to 
natural gas [83]. 

3. ML modeling of plastic waste pyrolysis 

The previous section provided a comprehensive technical summary 
of PW pyrolysis to understand the effects of different important factors 
on the decomposition process, distribution, and compositions of prod-
ucts from pyrolysis. However, based on the literature review, there is 
still room for improvement in the yield and quality of the desired 
products. Co-pyrolysis with a synergetic effect, optimizing pyrolysis 
processes, synthesizing outstanding catalysts, and designing pyrolysis 
reactors with good heat transfer have the potential to improve the 
conversion efficiency, yield, and quality of desired products from PW 
pyrolysis. However, it is challenging to efficiently find the proper ad-
ditives, optimal conditions, and effective catalysts for different PW py-
rolysis scenarios from simple experimental investigations. In this 
context, researchers have proposed and applied many state-of-the-art 
computational technologies, especially emerging ML methods, to aid 
PW pyrolysis in promoting the sustainable production of desired prod-
ucts [96]. 

Table 2 
Summary of machine learning application in plastic waste pyrolysis.  

Feedstock type Conversions Input variables Output targets ML model Data size Best R2 Ref. 

LDPE Microwave- 
assisted catalytic 
co-pyrolysis 

Catalyst type, catalysis temperature, 
space time 

C2-C4 olefins Active learning 18 0.96 [97] 

Rice husk and PS Microwave- 
assisted co- 
pyrolysis 

Feedstock ratio, heating rate Liquid, char, and water yields, 
average heating rate, and 
conversion percentage 

SVR 11 0.81–0.94 [98] 

PS Microwave- 
assisted pyrolysis 

Mass of KOH and PS Yield of char, gas, oil, pyrolysis time, 
heating rate, power, energy, and 
conversion efficiency of specific 
microwave, and conductive heat 
loss 

SVR 13 0.98–1.00 [99] 

Torrefied 
biomass and 
plastic wastes 

Microwave- 
assisted catalytic 
co-pyrolysis 

KOH mass and torrefied temperatures Yield of char, oil, and gas, 
microwave heating rate, conversion 
efficiency, and susceptor thermal 
energy 

Polynomial 
regression 

9 > 0.98 [100] 

PS with waste 
tea 

In-situ catalytic 
co-pyrolysis 

Mass of PS and waste tea Yield of water, char, gas, oil, and 
average heating rate 

SVR 11 0.85–0.93 [101] 

Mixed plastics Pyrolysis Reaction temperature, catalyst ratio, 
and reaction time 

Liquid and gaseous yield NN, Least 
Square SVR 

1048–1130 0.99 [102] 

PP, PE, PVC, PS, 
PET 

Pyrolysis and co- 
pyrolysis 

Plastic type, ultimate analysis, 
particle size, feed intake, pyrolysis 
temperature, residence time 

Yield of oil gas, char, liquid and gas 
compositions 

SVR, DT, NN, GP 274–301 0.61–0.94 [103] 

Biomass and 
plastics 

Co-pyrolysis Information of proximate and 
ultimate analysis, reaction 
temperature, time, heating rate, 
feedstock ratio 

Yield of biochar and bio-oil NN, XGBoost 94–96 0.85–0.96 [104] 

Plastics and 
biomass 

Co-pyrolysis Ultimate and proximate analysis, 
pyrolysis conditions 

Bio-oil yields and synergistic effects XGBoost 360 0.86–0.90 [105] 

Biomass and 
polymeric 
wastes 

Co-pyrolysis Ultimate analysis, proximate 
analysis, pyrolysis conditions 

Yield of char, oil, and gas NN, ELM, 
ANFIS, GAM, 
SVR, and GP 

339 0.93–0.98 [106] 

Mixture of 
HDPE, LDPE, 
PP, and PS 

Co-pyrolysis Ratios of different plastics Yield of char, oil, and gas NN 24 0.95–0.99 [107] 

PE and PS Co-pyrolysis Temperature, PS mass fraction, and 
flow rate of carrier gas 

Yield of char, oil, and gas, oil 
components and fractions 

NN 22 0.87–0.99 [108] 

Bamboo sawdust 
and LDPE 

Co-pyrolysis Signal intensity of representative 
products 

Weight loss RF, LSTM, MLR 80 0.90–0.99 [109] 

Agricultural 
waste and 
HDPE 

Co-pyrolysis Pyrolysis conditions Weight loss NN 10,000 0.99 [110] 

PLA and lignin Co-pyrolysis Mixed ratio, temperature, heating 
rate 

Weight loss NN – 0.99 [111] 

HDPE and oily 
sludge 

Co-pyrolysis Mixed ratio, temperature, heating 
rate 

interactive effect and activation 
energy 

NN – 0.99, 0.92 [112] 

Mixed plastics Co-pyrolysis Temperature, heating rate Weight loss NN 358, 752 0.99 [113] 

LDPE: Low Density Polyethylene, DT: Decision tree, NN: Neural networks, SVR: Support vector regression, GP: Gaussian process, ELM: Extreme learning machine, 
ANFIS: Adaptive neuro-fuzzy inference system, GAM: Generalized additive model, PE: Polyethylene, PP: polypropylene, PS: polystyrene, PVC: polyvinyl chloride, PET: 
polyethylene terephthalate, PLA: polylactic acid. 
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3.1. Comprehensive analysis of ML application in plastic waste pyrolysis 

To understand the significance of ML application in PW pyrolysis for 
aiding energy production, we conducted a comprehensive literature 
review and create a tabular summary, as shown in Table 2. It was found 
that ML methods have been widely applied in different types of pyrol-
ysis, including mono and mixed PW pyrolysis, co-pyrolysis of PW with 
other biomass waste, catalyst-aided pyrolysis, and microwave-assisted 
pyrolysis. Detailly, co-pyrolysis was the most popular pyrolysis type 
modeled by ML methods, followed by micro-assisted pyrolysis and 
normal pyrolysis. Although various catalysts have been used in PW 
pyrolysis, ML methods have not been well applied to screen or aid in the 
synthesis of catalysts for catalytic pyrolysis of PW, since only three 
studies related to the catalyst-aided pyrolysis were modeled by ML 

algorithms by considering some simply process parameters, according to 
our literature review. 

Regarding the ML model development, Neural Network (NN) and 
Support Vector Regression (SVR) methods were the most two welcomed 
algorithms used for modeling PW pyrolysis (Table 2). To develop ML 
models, the input and output variables need to be determined. For the 
input variables related to the PW pyrolysis, different inputs were 
considered in different ML works. Our literature review found that most 
of the data were from the authors’ own experimental setup, which 
resulted in a wide variation in the number and variables of inputs and 
outputs, although all of them included the reaction temperature. When 
using their own experimental data for ML modeling, authors identified 
only two or three investigated factors as input variables, with a partic-
ular focus on the catalyst amount and pyrolysis conditions. However, 

Fig. 5. Prediction of product distribution from pyrolysis of plastic waste by NN model (a) [107], the ML-based prediction and optimization of PE and PS co-pyrolysis 
for enhancing oil production (b) [108], the prediction and optimization of kinetic parameters (interactive effect and activation energy) in co-pyrolysis of oily sludge 
and HDPE (c) [112], and the ML-aided fast characterization of pyrolysis oil via combination (d) [120] (Adapted with permission from Elsevier). 
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when using data collected from the literature, rich inputs were consid-
ered, including information (proximate and ultimate analysis) on feed-
stock and pyrolysis conditions. For the output targets of ML modeling, it 
should be noted that ML methods have been applied in the PW pyrolysis 
for different purposes. According to our literature review (Table 2), the 
most common aim of ML application in PW pyrolysis is to predict the 
yield and distribution of three-phase products and optimize the pyrolysis 
conditions to produce desired products. Also, many ML modeling works 
focused on the pyrolysis kinetic to predict the weight loss and activation 
energy of PW during pyrolysis. Additionally, ML methods have been 
shown to be able to cooperate with some characterization instruments to 
identify the components in bio-oil generated from PW pyrolysis. More 
details about the ML application in PW pyrolysis are reviewed and dis-
cussed in the following sections. 

With respect to the data size, the number of data points from the 
authors’ own experimental setups was all less than 30 points, while the 
sizes of data sets compiled from the literature have significant differ-
ences, with the number of data points from hundreds to thousands. 
Surprisingly, all ML models developed from both small and large data 
sizes exhibited good prediction accuracy. All the prediction R2 of the 
developed ML models were in the range of 0.81 to 1.00, with most of 
them over 0.90. It is reasonable to expect high prediction performance of 
an ML model trained based on their own experiments because their own 
data had high quality with consistent formats and experimental setups. 
This would help the ML algorithm learn useful information from the data 
easily to well adapt to the specific procedure. However, it should be 
addressed that the generalization and robust ability of these ML models 
with small data sizes from the authors’ own experiments are limited. 

3.2. ML prediction, interpretation, and optimization of the products from 
plastic waste pyrolysis 

Recent studies have shown ML methods are capable of modeling PW 
pyrolysis for predicting product distribution from plastic waste (Fig. 5a). 
Cheng et al. employed four ML methods to predict product distribution, 
liquid and gas compositions from plastic pyrolysis. They found that the 
decision three (DT) model was the best one by comparing it with Sup-
porting Vector regression (SVR), Neural Network (NN), and Gaussian 
Process (GP) models, with a testing R2 > 0.85 for liquid yield produc-
tion. Furthermore, the DT models were further trained to predict the 
properties of other products with a testing R2 of 0.61–0.94 [103]. Sridevi 
et al. investigated the microwave-assisted co-pyrolysis of rice husk (RH) 
and polystyrene (PS) [98]. They found that PS enhanced the oil pro-
duction with a yield as high as 70 wt% under the ratio of 5:1 for PS to 
RH. They also employed the ML techniques to analyze the role of 
feedstock blending ratios of PS: RH on the yield of bio-oil yield, biogas 
yield, biochar yield, water yield, average heating rate, and conversion 
percentage, achieving good prediction R2 of 0.81–0.94. Yapıcı et al. 
developed SVR and GP models to predict gas yield from packaging waste 
pyrolysis with the consideration of waste types, temperature, heating 
rate, and type and amount of catalyst as inputs [114]. Good prediction 
performances from SVR and GP were achieved with R2 values of 0.89 
and 0.93, respectively. 

Based on the developed ML models with good prediction perfor-
mance, new insights into feature importance and correlations to the 
predicted targets could be unveiled through ML model-based interpre-
tation. Prasertpong et al. developed the XGBoost model to predict the oil 
yields and synergistic effects of co-pyrolysis of biomass and plastic 
waste, achieving prediction R2 values of 0.86 and 0.90 [105]. They used 
a synthetic minority over-sampling technique for regression with 
Gaussian noise to increase prediction accuracy by reducing the data 
imbalance. The SHapley Additive exPlanations method (SHAP) method 
was also applied to improve the interpretability of the ML mode, 
revealing that pyrolysis temperature and biomass-to-plastic ratio were 
the two most important features affecting oil generation. Alab-
drabalnabi et al. collected about 95 data points involved in the co- 

pyrolysis of plastic waste and biomass for ML model development 
[104]. They employed two ML algorithms, e.g., NN and XGBoost, to 
simulate the co-pyrolysis process and predict the yields of biochar and 
bio-oil with high prediction accuracy achieved (R2 as high as 0.96). They 
also applied SHAP to work with the developed ML models for under-
standing the influence of various parameters on the yield of biochar and 
bio-oil from the co-pyrolysis process, finding that the ratio of PW was the 
most important factor impacting the yields of both biochar and bio-oil. 

Prediction and interpretation are the fundamental application of ML 
models. Combining ML models with other optimization algorithms can 
provide more practical insights to guide the experimental investigation 
(Fig. 5b). Pan et al. developed a hybrid NN-genetic algorithm (NN-GA) 
model to predict and optimize the oil production from co-pyrolysis of PE 
and PS [108]. They suggested that NN models could accurately predict 
the oil yield, components, and fractions with mean absolute errors of less 
than 8%. Moreover, based on the NN-GA optimization, the highest oil 
yield of 82.33 wt% and the highest styrene/aromatics ratio of 55.22 wt% 
were achieved under the optimal conditions of 525 ◦C with 10 wt% PS. 
They also claimed that low temperature, high PS mass fraction, and low 
carrier gas flow rate were preferred to obtain light oil from co-pyrolysis. 
Shahbeik et al. used evolutionary ML methods to model and optimize 
the co-pyrolysis of biomass and polymeric wastes [106]. They found that 
the GP model was the best one with testing R2 values of 0.98, 0.93, and 
0.95 for the prediction of yields of oil, char, and syngas, respectively. 
Furthermore, they applied a multi-objective particle swarm optimiza-
tion algorithm to determine the feedstock composition and operating 
conditions with the objectives of maximizing pyrolysis oil yield and 
minimizing the char and syngas yield. Under the optimal conditions 
from the model optimization, they achieved a high oil yield of 
70.9–75.3 wt% from co-pyrolysis. L. Quesada examined the mathe-
matical modeling and optimization of pyrolysis of plastic film waste for 
biofuel generation [115]. They found that the neural fuzzy model with 
an R2 of 0.95 was better than the polynomial model for fitting the 
experimental data. The optimum pyrolysis conditions for oil production 
were a temperature of 500 ◦C with a residence time of 120 min and a 
heating rate of 20 ◦C/min. 

3.3. ML prediction and optimization of the kinetic of plastic waste 
pyrolysis 

In addition to the ML application in PW pyrolysis for prediction, 
interpretation, and optimization to achieve a high yield of desired 
products with good quality, ML methods have also been used to inves-
tigate the kinetic process of PW pyrolysis [116]. Yin et al. investigated 
the thermal pyrolysis behavior of HDPE by thermogravimetric analysis 
(TGA) and NN modeling [117]. They found that the weight loss, acti-
vation energy, and pre-exponential factor could be accurately predicted 
with R2 > 0.99 and a relative error of 6.8%. Dubdub developed an NN 
model based on the TGA data of mixed plastics, including the mixtures of 
PS + PP and PS + LDPE + PP, to study their co-pyrolysis behaviors 
[113]. The weight loss fraction of the mixed polymers could be well 
predicted with the temperature and heating rate as inputs by NN models, 
achieving testing R2 > 0.99. Yang et al. investigated the co-pyrolysis of 
bamboo sawdust and LDPE by a photoionization mass spectrometer (PI- 
MS) and ML methods [109]. They found that the TGA curve of the 
mixture of bamboo sawdust and LDPE during pyrolysis could be well 
predicted by both RF and Long Short-Term Memory (LSTM) models with 
signal intensity (detected by the PI-MS) of representative products from 
the corresponding temperature. The prediction accuracies of the TG 
curve were over 0.98 and 0.90 from the LSTM and RF, respectively. This 
work provided a reliable tool for monitoring the co-pyrolysis of biomass 
and plastics and understanding the kinetics of this process with TG curve 
prediction. 

Besides, ML-based optimization strategies have merits in maximizing 
the synergistic effect of co-pyrolysis, decreasing the activation energy, 
and promoting the production of desired products (Fig. 5c). Ai et al. 
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investigated the interactive effect and activation energy of co-pyrolysis 
between oily sludge (OS) and HDPE [112]. They found that co-pyrolysis 
of OS with HDPE had a synergistic effect that promoted conversion and 
accelerated degradation reactions, which may be caused by the abun-
dant •CH3 free radicals provided by HDPE in co-pyrolysis. Moreover, 
two NN models were developed to predict interactive effect and acti-
vation energy with testing R2 values of 0.99 and 0.92, respectively. More 
interestingly, new pyrolysis conditions were optimized based on the 
developed NN model to acquire the best synergistic effect and decrease 
the activation energy. The model found that the best synergistic effect 
(90.61%) was acquired at a pyrolysis temperature of 480 ◦C, heating 
rate of 10 ◦C/min, and a biomass to plastic blending ratio of 0.7 with an 
experimental validation error of 6%. Dogu et al. developed a tree-based 
kinetic Monte Carlo with parameter tuning based on Bayesian optimi-
zation to model the pyrolysis pathways of PS [118]. The kinetic pa-
rameters from the scission pathway were used as inputs to predict the 
major product yields. It was found that the yield and selectivity of sty-
rene monomer could be efficiently maximized in PS pyrolysis to be 
reused as a feedstock for styrene polymerization. The highest styrene 
yield of 77.3 wt% was achieved under the pyrolysis temperature of 
600 ◦C. 

3.4. ML-aided characterization and evaluation of pyrolysis oil 

ML methods are powerful tools that can also aid the characterization 
and identification of products from PW pyrolysis, especially for the bio- 
oil with complex compositions (Fig. 5d). Sholokhova et al. managed to 
predict and identify the liquid product of plastic pyrolysis followed by 
ozone treatment using gas chromatography-mass spectrometry (GC–MS) 
and ML [119]. They trained NN models to predict the retention indices 
from spectrometry with standard polar and nonpolar phases as input 
variables. This could assist in determining the composition of the ozone- 
treated pyrolysis liquid, such as hydrocarbon and oxygen-containing 
compounds. Chen et al. proposed a fast characterization method that 
combined attenuated total reflection Flourier transformed infrared 
spectroscopy (ATR-FTIR) and ML to understand the indicators of bio-oil 
from pyrolysis [120]. To increase the prediction accuracy of the ML 
model (SVR algorithm was used), principal component analysis (PCA) 
was applied to reduce the dimensionality of the original ATR-FTIR data 
from 7469 to below 20. After the PCA pretreatment, the ML model 
performance significantly increased with the R2 values increasing from 
0.05 to 21 to 0.62–0.93 for the prediction of unsaturated concentration, 
effective hydrocarbon ratio, low calorific value, C content, H content, 
and O content of pyrolysis bio-oil. Moreover, the model-based sensitivity 
analysis indicated that PC6 and PC7 had the most significant impacts on 
the prediction performance, which indicated the PC6 and PC7-related 
peaks were most important for the identification of these bio-oil 
indicators. 

In addition to the above-mentioned ML application in bio-oil char-
acterization from PW pyrolysis, ML algorithms can also be employed to 
evaluate the potential application of bio-oil and its possible emissions. 
As if Afzal et al. blended the plastic pyrolysis oil and coconut oil with 
diesel fuel to evaluate their potential application in a diesel engine by 
developing an NN to predict the brake thermal efficiency, specific fuel 
consumption, and the emissions of CO, CO2, and NOx [121]. They found 
that the NN model after hyper-parameter tuning could predict the 
experimental results well with ratios varying from 90% to 93.5%. Such 
intelligent model could aid in optimizing engine performance and 
evaluating the emission features with the bio-oil from PW pyrolysis as 
energy supply. 

4. Challenges and future direction 

Pyrolysis is an effective and sustainable technology widely applied in 
the PW recycling for high-quality product production. The impacts of 
various factors (e.g., feedstock, process condition, catalyst, and reactors) 

on the PW pyrolysis were well investigated by the domain research 
community to improve the conversion efficiency and quality of con-
verted products. However, there are still many challenges and limita-
tions for the technical aspect of PW pyrolysis that need to be addressed 
in the future. 

The complexity of pyrolysis oil products is restricted by plastic types 
and operation conditions, making it difficult for real application as 
gasoline, diesel, and other fuels. More studies should focus on devel-
oping outstanding catalysts and designing proper feedstock combina-
tions for co-pyrolysis to improve target product selectivity without 
further downstream processes for oil upgrading. The deactivation and 
poisoning of catalysts increase the operation costs and raise another 
challenge for the pyrolysis formula and process design. Moreover, the 
mechanisms for catalyst deactivation, coke formation, and regeneration 
during catalytic pyrolysis are still unclear based on current research. 
Further studies should analyze changes in surface-active sites and in-
ternal pore structure of catalysts, as well as the intermediates generated 
during the process to determine reaction pathways during catalytic PW 
pyrolysis. 

The delicate separation of single PW is a challenge in real industrial 
applications. Therefore, research focused on the pyrolysis of multi-
component mixtures of PW needs to be emphasized in the future. It is of 
great significance to develop a robust catalyst that can adapt different 
types of waste for producing desired products. Furthermore, the mixture 
of feedstock should meet the real waste mixture compositions according 
to local municipal solid waste classification. The occurrence of PVC in 
mixed waste PW is inevitable in reality, which would pollute the product 
and damage reactors by producing corrosive hydrochloric acid during 
pyrolysis and application. Therefore, advanced techniques are required 
for separating PVC from the plastic mixture, removing chlorine from 
PVC during valorization, or getting rid of hydrochloric acid in the final 
product. 

Additionally, the reported works are typically conducted at a gram 
scale or lower. To achieve industrial breakthroughs and provide prac-
tical references to commercial applications, it is essential to conduct 
pilot-scale studies based on the foundation of lab investigation. 
Furthermore, comprehensive system perspectives should be improved in 
the waste to energy [122]. For example, renewable energy supply sys-
tems with multiple energy sources (e.g., solar, wind, biomass, organic 
waste) should be designed for the energy supply of industrial PW py-
rolysis with the aim of zero or negative carbon emissions. It should be 
noted that the required energy could be partially or completely replaced 
by the thermal energy from pyrolysis gases, oil, and solid residue. Thus, 
energy recovery and waste management of PW pyrolysis could be 
implemented as closed-loop recycling. 

To promote the development of PW pyrolysis, ML methods have been 
widely used to predict and optimize the distribution and composition of 
converted products and the pyrolysis kinetics. They are also applied to 
cooperate with characterization equipment (e.g., GC–MS and ATR-FTIR) 
to identify chemical compounds in bio-oil from PW pyrolysis. However, 
there are still some research gaps and limitations that need to be 
addressed in the future. 

More effort should be made to employ ML algorithms to aid the 
catalyst screening and synthesis for PW pyrolysis, as the catalyst is the 
key to increasing the product quality and decreasing the energy con-
sumption during pyrolysis process. For example, our previous work 
explored the ML modeling of another similar thermal conversion, the 
gasification of waste with catalyst consideration [123]. A robust NN 
model was provided to adapt both non-catalyst and catalyst hydro-
thermal gasification processes of wet waste for the yield prediction of 
syngas composition (i.e., H2, CH4, CO2, and CO). The robust model was 
further applied to understand the impacts of the feedstock property, 
gasification condition, and catalyst properties on syngas yield. Besides, 
we combined optimization strategy with the robust ML model to develop 
an inverse design framework for catalyst screening and the optimization 
of gasification conditions with the aim of H2-rich syngas production. 

J. Li et al.                                                                                                                                                                                                                                         



Applied Energy 346 (2023) 121350

12

Based on the tabular summary in Table 2, over 50% of the datasets 
have small sizes, with below 100 data points, among which most of them 
had less than 30 data points. Although these ML models have good 
prediction performance within their own experimental system, it is 
challenging to ensure the generalization and robustness of the devel-
oped model. Moreover, many of the reported works only considered 2–3 
factors in PW pyrolysis as inputs to develop ML models. Other important 
factors that have been overlooked might play a crucial role in deter-
mining the yield and quality of the converted products. To develop a 
comprehensive ML model, data from different experimental setups and 
researchers should be collected, considering various types of input fac-
tors, including the PW type, catalyst, and operational conditions 
involved in the PW pyrolysis. However, in practice, it is quite difficult to 
extract all the input information from different publications due to the 
irregular format and inconsistency of data provided by researchers. The 
more factors we considered, the less data there is. Therefore, it is 
necessary to trade off the number of data points and the number of input 
features during the dataset-compiling procedure. Additionally, it would 
be beneficial for data collection if a database with a standardized format 
of dataset compiling in this domain was published by reputable orga-
nizations. This would provide a data pool for the research community to 
upload and download related data and raise their awareness of data 
sharing. Besides, traditional modeling approaches, such as Computa-
tional Fluid Dynamics and Aspen Simulation, could cooperate with ML 
to provide more data to overcome the sparse experimental data, such 
hybrid modeling approach was proposed and detailed introduced in our 
previous work [28]. 

For the ML modeling limited to the authors’ own experimental data, 
more innovative ways could be explored by incorporating ML and ex-
periments to promote the PW pyrolysis. One widely used approach is 
active learning which is based on roughly experimental data to develop 
a surrogate model first and then combine it with optimization algo-
rithms to achieve goal-oriented reverse engineering practices for new 
experimental design. This approach can guide experimentalists to 
conduct further research in the lab, generating more data to update the 
original dataset and surrogate model. Finally, a model-based prediction- 
optimization-experiments close loop will be generated to improve the 
PW pyrolysis performance and achieve the final goal in an iterative way. 
Based on the literature review, only one similar work has been published 
in the PW pyrolysis domain. Ureel et al. developed an active-learning 
strategy that combined k-means clustering with the Expected Model 
Output Change acquisition function optimized for GP to investigate the 
catalytic pyrolysis of plastic waste for light olefins (C2-C4) production. 
They found that the active learning strategy achieved a 33%-reduction 
in experiments [97]. However, this work only optimized the catalysis 
temperature and time. More efforts should be made to simultaneously 
optimize the catalyst synthesis and PW pyrolysis in the future. 

In addition, a weakness of pure data-driven black-box ML models is 
their weak interpretability. Although some ML algorithms (e.g., tree- 
based models) and model explainers (e.g., SHAP method) can provide 
insights on the feature importance and correlations to the predicted 
targets, as described in Section 3.2 for PW pyrolysis, such information 
can only tell us to what extent the input feature impact the prediction 
performance. It is still unclear why the input features have these im-
pacts. In recent years, physics-informed or domain knowledge-guided 
ML modeling has been reported. To develop such ML model, domain 
knowledge or first principal rules are considered in the loss function for 
ML model training. For example, Zobeiry and Humfeld developed a 
physics-informed ML approach for solving the heat transfer equation by 
defining the activation function and loss function of NN based on errors 
to satisfy partial differential equations, boundary conditions, and initial 
conditions of heat transfer scenarios [124]. This approach can also be 
applied to assist the ML investigation of the heat transfer during PW 
pyrolysis to deeply understand the heating process and enhance the PW 
conversion. 

5. Conclusions 

This paper provides a comprehensive review of the state-of-the-art of 
pyrolysis for PW valorization from both technical and ML modeling 
aspects. Many studies have investigated the impact of PW type, process 
condition, catalyst, and reactor type on the yield and quality of products 
from PW pyrolysis. Pyrolysis temperature plays a critical role in 
breaking the C–C bonds of PW. Zeolite-related, metal-involved, and 
carbon-based catalysts are frequently applied in PW pyrolysis. Various 
reactors, including fluidized bed reactors, microwave-assisted reactors, 
solar concentrator reactors, and autogenic pressure autoclave reactors, 
have been developed to assist in PW pyrolysis. However, more efforts 
are still needed to design outstanding catalysts and select co-pyrolysis 
additives that can adapt to different PW types, especially the real un-
sorted PW, and improve the target product selectivity. The mechanism 
of catalyst deactivation, coke formation, and regeneration, as well as the 
thermochemical reaction pathways in PW pyrolysis, should be further 
investigated. To promote the commercialization of PW pyrolysis, more 
pilot-scale studies should be conducted. Furthermore, renewable energy 
supply systems with multiple energy sources should be designed for PW 
pyrolysis plants to achieve carbon neutrality. 

In the case of ML application in PW pyrolysis, many studies have 
explored the potential of ML methods to predict, interpret, and optimize 
different PW pyrolysis scenarios (e.g., mono and mixed PW pyrolysis, co- 
pyrolysis of PW with other biomass waste, catalyst-aided pyrolysis, and 
microwave-assisted pyrolysis) for understanding the process and 
improving the production of desired products. Co-pyrolysis was the most 
popular pyrolysis type modeled by ML methods, followed by micro- 
assisted pyrolysis, and normal pyrolysis. Moreover, the most widely 
used algorithms for modeling PW pyrolysis were Neural Network (NN) 
and Support Vector Regression (SVR) methods. Also, there are many 
limitations that can be further improved in the future. The ML-aided 
synthesis of catalysts with high selectivity and activity for PW pyroly-
sis should be further explored in innovative ways, such as active learning 
with inverse design. More efforts, such as the development of a stan-
dardized dataset format and cooperation with traditional modeling, 
should be made to increase the size of datasets with more relevant fac-
tors considered. Last but not least, the interpretability of ML models can 
be improved by developing physics-informed or domain knowledge- 
guided models for PW pyrolysis. 
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